Preprint
Article

Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

Altmetrics

Downloads

1105

Views

1062

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 January 2017

Posted:

27 January 2017

You are already at the latest version

Alerts
Abstract
The accurate wellbore pressure control not only prevents from lost circulation/blowout and fracturing formation by managing density of drilling fluid, but also improves productivity by mitigating reservoir damage. The geothermal pressure calculated by constant parameters for geothermal well would bring big error easily, as the changes of physical, rheological and thermal properties of drilling fluids with temperature were neglected. This paper researches the wellbore pressure coupling by calculating the temperature distribution with existed model, fitting the rule of density of drilling fluid with temperature and establishing mathematical models to stimulate the wellbore pressures, which is expressed as the variation of Equivalent Circulating Density (ECD) under different conditions. With this method, temperature and ECDs in the wellbore of the first medium-deep geothermal well ZK212 Yangyi Geothermal Field in Tibet were determined, and the sensitivity analysis was simulated by assumed parameters, i.e. circulating time, flow rate, geothermal gradient, diameters of wellbore, rheological models and regimes, the results indicated the geothermal gradient and flow rate were the most influence parameters on the temperature and ECD distribution, and additives added in drilling fluid should be careful which would change the properties of drilling fluid and induce the temperature redistribution. To make sure the safe drilling, velocity of pipes tripping into the hole, depth and diameter of wellbore are considered to control the surge pressure.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated