Preprint
Article

This version is not peer-reviewed.

Experimental Analysis of Thermal Runaway in 18650 Cylindrical Li-Ion Cells Using an Accelerating Rate Calorimeter

A peer-reviewed article of this preprint also exists.

Submitted:

10 February 2017

Posted:

10 February 2017

You are already at the latest version

Abstract
In this work commercial 18650 lithium-ion cells with LiMn2O4, LiFePO4 and Li(Ni0.33Mn0.33Co0.33)O2 cathodes were exposed to external heating in an Accelerating Rate Calorimeter (es-ARC, THT Company) to investigate the thermal behavior under abuse conditions. New procedures for measuring external and internal pressure change of cells were developed. The external pressure was measured utilizing a gas-tight cylinder inside the calorimeter chamber in order to detect venting of the cells. For internal pressure measurements, a pressure line connected to a pressure transducer was directly inserted into the cell. During the thermal runaway experiments, three stages (low rate, medium rate and high rate reaction) have been observed. Both pressure and temperature change indicated different stages of exothermic reactions, which produced gases or/and heat. The onset temperature of thermal runaway was estimated according to temperature and pressure changes. Moreover, the different activation energies for the exothermic reactions could be derived from Arrhenius plots.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated