Preprint
Article

Image-Based Multi-Target Tracking Through Multi-Bernoulli Filtering with Interactive Likelihoods

Altmetrics

Downloads

850

Views

913

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 February 2017

Posted:

16 February 2017

You are already at the latest version

Alerts
Abstract
We develop an interactive likelihood (ILH) for sequential Monte-Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, AFL, and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (OSPA and CLEAR MOT). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated