Euler’s product formula over the primes and Euler’s zeta function equate to enshrine the Fundamental Theorem of Arithmetic that every integer > 1 is the product of a unique set of primes. The product formula has no zero, and with a domain ≤1 Euler’s zeta diverges. Dirichlet’s eta function η(s), negates alternate terms of zeta, permitting convergence when s∈C and Re(s) < 1, and its non-trivial zeros {ρ}, have a deep relationship with the distribution of the primes. The Riemann Hypothesis is that all the non-trivial zeros have Re(ρ) = 1/2. This work examines the symmetries in a partial Euler’s zeta series with a complex domain equating it to the difference between two finite vector series whose matched terms have mirror-image arguments, but whose magnitudes differ when Re(s) ≠ 1/2. Analytical continuation generates a modified eta series ηl(s), in which every lth term is multiplied by (1-l). If the integer l is appropriately determined by the Im(s), similar paired finite vector series have a difference that closely follows ηl (s) and their terminal vectors intersect in a unique way permitting zeros only when Re(s) = 1/2. Furthermore, those vectors tracking the derivatives of the series, have a special relationship permitting zeros of the differential only when Re(s) > 1/2.
Keywords:
Subject: Computer Science and Mathematics - Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.