In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for statement and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value which can lead to the state estimation error and arouse the filtering divergence, a real-time covariance matrices estimation algorithm based on hybrid MAP and ML is proposed for obtaining the statement and measurement noises covariance, respectively; and then, a balance equation the two kinds of covariance matrix is structured in this proposed to minimize the statement estimation error. Compared with the UFK based MAP and based ML, the proposed algorithm provides better convergence and stability.
Keywords:
Subject: Engineering - Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.