Preprint
Article

Simplified Simulation Method for Flood-Induced Bend Scour—A Case Study Near the Shuideliaw Embankment on the Cho-Shui River

Altmetrics

Downloads

1219

Views

861

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 March 2017

Posted:

21 March 2017

You are already at the latest version

Alerts
Abstract
The modeling of flood-induced bend scour near embankment toes can provide important information for river engineering, embankment safety warnings, and emergency action management. During the rainy seasons, short-term general scour and bend scour are the most common causes for the failure of reinforced concrete embankments in Taiwan. To gain a deeper understanding of the scouring process near levee foundations, this study proposed a straightforward and practical method for bend scour simulation. The proposed simulation method is subdivided into three stages: two-dimensional flow simulation, general scour estimation, and bend scour estimation. A new bend-scour computation equation is proposed and incorporated into a two-dimensional hydraulic finite-volume model for simulating the evolution of bend scour depth around embankment toes. The proposed method is applied to simulate the temporal evolution of bend scouring near the Shuideliaw Embankment on the Cho-Shui River in Taiwan, where serious failure occurred during the June 2012 monsoon. Field data were gathered using the numbered-brick technique at the Shuideliaw Embankment to demonstrate the accuracy of the proposed method. The results of the bend scour simulations compared reasonably well with field measurements, indicating close agreement in terms of water levels and bend scour depths near the Shuideliaw Embankment. The proposed method was found to quickly estimate the maximum short-term general scour and bend scour depths for further enhancement of the safety of the embankment toe.
Keywords: 
Subject: Physical Sciences  -   Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated