PreprintArticleVersion 1Preserved in Portico This version is not peer-reviewed
A Novel Protocol to Monitor Trace Levels of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Using Fabric Phase Sorptive Extraction Followed by High Performance Liquid Chromatography-Fluorescence Detection
Version 1
: Received: 22 March 2017 / Approved: 22 March 2017 / Online: 22 March 2017 (17:47:16 CET)
Version 2
: Received: 19 April 2017 / Approved: 19 April 2017 / Online: 19 April 2017 (19:27:27 CEST)
Saini, S.S.; Kabir, A.; Rao, A.L.J.; Malik, A.K.; Furton, K.G. A Novel Protocol to Monitor Trace Levels of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Using Fabric Phase Sorptive Extraction Followed by High Performance Liquid Chromatography-Fluorescence Detection. Separations2017, 4, 22.
Saini, S.S.; Kabir, A.; Rao, A.L.J.; Malik, A.K.; Furton, K.G. A Novel Protocol to Monitor Trace Levels of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Using Fabric Phase Sorptive Extraction Followed by High Performance Liquid Chromatography-Fluorescence Detection. Separations 2017, 4, 22.
Saini, S.S.; Kabir, A.; Rao, A.L.J.; Malik, A.K.; Furton, K.G. A Novel Protocol to Monitor Trace Levels of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Using Fabric Phase Sorptive Extraction Followed by High Performance Liquid Chromatography-Fluorescence Detection. Separations2017, 4, 22.
Saini, S.S.; Kabir, A.; Rao, A.L.J.; Malik, A.K.; Furton, K.G. A Novel Protocol to Monitor Trace Levels of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Using Fabric Phase Sorptive Extraction Followed by High Performance Liquid Chromatography-Fluorescence Detection. Separations 2017, 4, 22.
Abstract
Fabric phase sorptive extraction (FPSE) combines the advanced material properties of sol–gel derived microextraction sorbents and the flexible and permeable fabric support to create a robust, simple and green sample preparation device. It simultaneously improves the extraction sensitivity, and the speed of the extraction by incorporating high volume of sponge-like porous sol–gel hybrid inorganic–organic sorbents into permeable fabric substrates that is capable of extracting target analytes directly from simple to complex aqueous sample matrices. For the first time, this technique was applied to the trace level determination of selected polycyclic aromatic hydrocarbons (PAHs) in environmental water samples using a non-polar sol–gel C18 coated FPSE media. Several extraction parameters were optimized to improve extraction efficiency and to achieve high detection sensitivity. Validation tests of spiked samples showed good linearity for four selected PAHs (R2 = 0.9983–0.9997) over a wide range of concentrations (0.010-10 ng/mL). Limits of detection (LODs) and quantification (LOQs) were measured at pg/mL levels, 0.1–1 pg/mL and 0.3–3 pg/mL, respectively. Inter- and intra-day precision tests showed variations of 1.1–4.1% for four selected PAHs. Average absolute recovery values were in the range of 88.1–90.5% surpassed the recovery prediction model, with relative standard deviations below 5%. The developed FPSE-HPLC-FLD protocol was finally applied to analyze 8 environmental water samples. Out of four selected PAHs, fluoranthene (Flu) and phenanthrene (Phen) were the most frequently detected in four samples, at concentration levels of 5.6–7.7 ng/mL and 4.1-11 ng/mL, respectively followed by anthracene (Anth) and pyrene (Pyr) in two samples. The newly developed FPSE-HPLC-FLD protocol is simple, green, fast and economical, with adequate sensitivity for trace levels of four selected PAHs and seems to be promising in routine monitoring of water quality and safety.
Chemistry and Materials Science, Analytical Chemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.