Preprint
Article

Development of a Laser Triangulation Displacement Probe with Laser Beam Pointing Control

Altmetrics

Downloads

1426

Views

1062

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 March 2017

Posted:

30 March 2017

You are already at the latest version

Alerts
Abstract
Directional dithering of a laser beam potentially limits the detection accuracy of a laser triangulation displacement probe. A theoretical analysis indicates that the measurement accuracy will linearly decrease as the laser dithering angle increases. To suppress laser dithering, a laser triangulation displacement probe with laser beam pointing control, which consists of a collimated red laser, a laser beam pointing control setup, a receiver lens, and a charge-coupled device, is proposed in this paper. The laser beam pointing control setup is inserted into the source laser beam and the measured object and can separate the source laser beam into two symmetrical laser beams. Hence, at the angle at which the source laser beam dithers, the positional averages of the two laser spots are equal and opposite. Moreover, a laser dithering compensation algorithm is used to maintain a stable average of the positions of the two spots on the imaging side. Experimental results indicate that with laser beam pointing control, the standard variance of the fitting error decreases from 0.3531 to 0.0100, the repeatability accuracy can be decreased from ±7mm to ±5 μm, and the nonlinear error can be reduced from ±6 %FS to ±0.16 %FS.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated