A highly-integrated experimental system for plasma decomposition of fuels was built. Experiments were conducted and confirmed that macromolecular chain hydrocarbons were cracked by large-gap dielectric barrier discharge under the excitation of a microsecond-pulse power supply. Alkanes and olefins with a C atom number smaller than 10 as well as hydrogen were found in the cracked products of n-decane (n-C10H22). The combination of preheating and plasma decomposition had strong selectivity for olefins. Under strong discharge conditions, micromolecular olefins were found in the products. Moreover, there was a general tendency that micromolecular olefins gradually accounted for higher percentage of products at higher temperature and discharge frequency.
Keywords:
Subject: Physical Sciences - Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.