Preprint
Article

Dynamics of H3K4me3 Chromatin Marks Take the Lead over H3K27me3 for Gene Regulation during Flower Morphogenesis in Arabidopsis thaliana

Altmetrics

Downloads

1181

Views

1211

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 May 2017

Posted:

08 May 2017

You are already at the latest version

Alerts
Abstract
Plant life-long organogenesis involves sequential, time and tissue specific expression of developmental genes. This requires activities of Polycomb Group (PcG) and trithorax Group complexes, respectively responsible for repressive Histone 3 trimethylation at lysine 27 (H3K27me3) and activation-related H3K4me3. However, the genome-wide dynamics in histone modifications that occur during developmental processes have remained elusive. Here, we report the distributions of H3K27me3 and H3K4me3 along with transcriptional changes, in a developmental series including Arabidopsis leaf and three stages of flower development. We found that chromatin mark levels are highly dynamic over the time series on nearly half of all Arabidopsis genes. Moreover, during early flower morphogenesis, changes in H3K4me3 prime over changes in H3K27me3 and quantitatively correlate with transcription changes, while H3K27me3 changes occur after prolonged expression changes. Notably, early activation of PcG target genes is dominated by increases in H3K4me3 while H3K27me3 remains present at the locus. Our results reveal H3K4me3 as greater predictor over H3K27me3 for transcription dynamics, unveil unexpected chromatin mechanisms at gene activation and underline the relevance of tissue-specific temporal epigenomics.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated