Preprint
Article

Implant Stability of Biological Hydroxyapatites Used in Dentistry

Altmetrics

Downloads

917

Views

766

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 May 2017

Posted:

01 June 2017

You are already at the latest version

Alerts
Abstract
The aim of the present study was to monitor implant stability after sinus floor elevation with two biomaterials during the first 6 months of healing by a resonance frequency analysis (RFA), and how physico-chemical properties affect the implant stability quotient (ISQ) at the placement and healing sites. Bilateral maxillary sinus augmentation was performed in 10 patients in a split-mouth design using a bobine HA (BBM) as a control and porcine HA (PBM). Six months after sinus lifting, 60 implants were placed in the posterior maxilla. The ISQ was recorded on the day of surgery from RFA at T1 (baseline), T2 (3 months), and T3 (6 months). Statistically significant differences were found in the ISQ values during the evaluation period. The ISQ (baseline) was 63.8±2.97 for BBM and 62.6±2.11 for PBM. The ISQ (T2) was ~ 73.5±4.21 and 67±4.99, respectively. The ISQ (T3) was ~ 74.65±2.93 and 72.9±2.63, respectively. All the used HAs provide osseointegration and statistical increases in the ISQ at baseline, T2 and T3 (follow-up), respectively. The BBM, sintered at high temperature with high crystallinity and low porosity, presented higher stability, which demonstrates that variations in the physico-chemical properties of a bone substitute material clearly influence implant stability.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated