Preprint
Article

Reconstruction of Daily Sea Surface Temperature Based on Radial Basis Function Networks

Altmetrics

Downloads

861

Views

600

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 June 2017

Posted:

05 June 2017

You are already at the latest version

Alerts
Abstract
A radial basis function network (RBFN) method is proposed to reconstruct daily Sea surface temperatures (SSTs) with limited SST samples. For the purpose of evaluating the SSTs using this method, non-biased SST samples in the Pacific Ocean (10°N–30°N, 115°E–135°E) are selected when the tropical storm Hagibis arrived in June 2014, and these SST samples are obtained from the OISST products according to the distribution of AVHRR L2p SST and in-situ SST data. Furthermore, an improved nearest neighbor cluster (INNC) algorithm is designed to search the optimal hidden knots for RBFNs from both the SST samples and the background fields. Then the reconstructed SSTs from the RBFN method are compared with the results from the optimum interpolation (OI) method. The statistical results show that the RBFN method has a better performance of reconstructing SST than the OI method in the study, and the average RMSE is 0.48°C for the RBFN method, which is quite smaller than the value of 0.69°C for the OI method. Additionally, the RBFN methods with different basis functions and clustering algorithms are tested, and we discover that the INNC algorithm with multi-quadric function is quite suitable for the RBFN method to reconstruct SSTs when the SST samples are sparsely distributed.
Keywords: 
Subject: Environmental and Earth Sciences  -   Oceanography
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated