Preprint
Article

An Improved Collaborative Algorithm with Artificial Neural Network in Multidisciplinary Design Optimization of AUV

Altmetrics

Downloads

735

Views

725

Comments

0

This version is not peer-reviewed

Submitted:

04 June 2017

Posted:

05 June 2017

You are already at the latest version

Alerts
Abstract
Multidisciplinary Design Optimization (MDO) is the most active field in the design of current complex system engineering, which is possessed with such two difficulties as subsystem information exchange and analytical and computational complexity of systems. Therefore, an improved collaborative optimization algorithm based on ANN (artificial neural network) response surface was proposed dependent on the consistency constraint algorithm and concurrent subspace algorithm. As an optimization method with secondary structure, it satisfied only local constraints in discipline layer, but provided a coordinated mechanism for interdisciplinary conflict in system layer. Finally, it was applied in the multidisciplinary design optimization of autonomous underwater vehicle (AUV). As shown from the result, the MDO convergence stability and reliability of low resistance, low noise and high maneuvering performance of the AUV shape can be ensured by the improved collaborative optimization algorithm, thus verifying the effectiveness of the algorithm.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated