Let G be a finite group. The prime graph Γ(G) of G is defined as follows: The set of vertices of Γ(G) is the set of prime divisors of |G| and two distinct vertices p and p' are connected in Γ(G), whenever G has an element of order pp'. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with Γ(G)=Γ(P), G has a composition factor isomorphic to P. In [4] proved finite simple groups 2Dn(q), where n ≠ 4k are quasirecognizable by prime graph. Now in this paper we discuss the quasirecognizability by prime graph of the simple groups 2D2k(q), where k ≥ 9 and q is a prime power less than 105.
Keywords:
Subject: Computer Science and Mathematics - Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.