Preprint
Review

In Quest for Improved Drugs against Diabetes: The Added Value of X-ray Powder Diffraction Methods

Altmetrics

Downloads

637

Views

658

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 July 2017

Posted:

12 July 2017

You are already at the latest version

Alerts
Abstract
Human Insulin (HI) is a well-characterized natural hormone which regulates glycose levels into the blood-stream and is widely used for diabetes treatment. Numerous studies have manifested that despite significant efforts devoted to structural characterization of this molecule and its complexes with organic compounds (ligands), there is still a rich diagram of phase transitions and novel crystalline forms to be discovered. Towards the improvement of drug delivery, identification of new insulin polymorphs from polycrystalline samples, simulating the commercially available drugs, is feasible today via macromolecular X- ray powder diffraction (XRPD). This approach has been developed and is considered as a respectable method, which can be employed in biosciences for various purposes such as observing phase transitions and characterizing bulk pharmaceuticals. An overview of structural studies on human insulin complexes performed over the past decade employing both synchrotron and laboratory sources for XRPD measurements, is reported herein. This review aims to assemble all recent advances in diabetes treatment field in terms of drug formulation, verifying in parallel the efficiency and applicability of protein XRPD for quick and accurate preliminary structural characterization in large scale.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated