Preprint
Article

An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on Gestalt

Altmetrics

Downloads

1322

Views

1175

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

24 August 2017

Posted:

24 August 2017

You are already at the latest version

Alerts
Abstract
An adaptive spatial clustering (ASC) algorithm is proposed in this present study, which employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather than through the modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation or Voronoi diagram). It can quickly identify arbitrarily-shaped clusters while adapting efficiently to non-homogeneous density characteristics of spatial data, without the need of prior knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic characteristics flowing in the form of spatial clustering in large data sets.
Keywords: 
Subject: Engineering  -   Transportation Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated