Besides the Lagrangian and the Eulerian descriptions, the motion of a body can also be expressed relative to the present configuration of the body, known as the relative motion description. It is interesting to consider such a relative motion description in general to formulate the basic system of field equations for solid bodies. In doing so, when the time increment from the present state is small enough, the nonlinear constitutive equations can be linearized relative to the present state so that the resulting system becomes linear. This will be done for thermoelastic materials with a brief comment on the exploitation of entropy principle in general. Relative Lagrangian formulation is based on the well-known ``small-on-large'' idea, and can be implemented for solving problems with large deformation in successive incremental manner. Some applications of such a formulation in numerical simulations are briefly reviewed.
Keywords:
Subject: Physical Sciences - Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.