Preprint
Article

Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold

Altmetrics

Downloads

1957

Views

870

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

18 September 2017

Posted:

18 September 2017

You are already at the latest version

Alerts
Abstract
This paper presents the results of an experimental investigation about target detecting with passive sonar in Persian Gulf. Detecting propagated sounds in the water is one of the basic challenges of the researchers in sonar field. This challenge will be complex in shallow water (like Persian Gulf) and noise less vessels. Generally, in passive sonar the targets are detected by sonar equation (with constant threshold) which increase the detection error in shallow water. Purpose of this study is proposed a new method for detecting targets in passive sonars using adaptive threshold. In this method, target signal (sound) is processed in time and frequency domain. For classifying, Bayesian classification is used and prior distribution is estimated by Maximum Likelihood algorithm. Finally, target was detected by combining the detection points in both domains using LMS adaptive filter. Results of this paper has showed that proposed method has improved true detection rate about 27% compare other the best detection method.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated