Preprint
Article

Monitoring of Structures by a Laser Pointer. Dynamic Measurement of Rotations and Displacements of the Elastic Line of a Bridge: Methodology and First Test

Altmetrics

Downloads

1183

Views

745

Comments

0

Submitted:

09 December 2017

Posted:

11 December 2017

You are already at the latest version

Alerts
Abstract
Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; no one of these does allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of a HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed to relate the position of the truck on the deck to inclination and displacements. The inclination of elastic line was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, control and monitoring of bridges.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated