Preprint
Article

Thermal and Electrical Characterization of a Semi-Transparent Dye Sensitized Photovoltaic Module under Real Operating Conditions

Altmetrics

Downloads

744

Views

489

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

07 December 2017

Posted:

07 December 2017

You are already at the latest version

Alerts
Abstract
Dye sensitized solar cell technology is having an important role in renewable energy research due to its features and low cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye sensitized solar modules (DSM) are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However still few works in the literature provide this information. The study here presented wants to contribute to fill this gap providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance and solar heat gain coefficient (SHGC) of a DSM prototype. The device exhibits an U-value of 3.6 W/m2K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization evidences an increase of module power with respect to temperature causing DSM suitable for integration in building facades.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated