Preprint
Article

Chemical Vapour Deposition Graphene Field-Effect Transistors for Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker

Altmetrics

Downloads

994

Views

1090

Comments

0

Submitted:

29 December 2017

Posted:

02 January 2018

You are already at the latest version

Alerts
Abstract
We report on the development of chemical vapour deposition (CVD) based graphene field effect transistor (GFET) immunosensors for the sensitive detection of Human Chorionic Gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFET sensors were fabricated on Si/SiO2 substrate using photolithography with evaporated chromium and sputtered gold contacts. GFET channels were functionalized with a linker molecule to immobile anti-hCG antibody on the surface of graphene. Binding reaction of the antibody with varying concentration levels of hCG antigen demonstrated the limit of detection of the GFET sensors to be below 1 pg/mL using four-probe electrical measurements. We also show annealing can significantly improve the carrier transport properties of GFETs and shift the Dirac point (Fermi level) with reduced p-doping in back-gated measurements. The developed GFET biosensors are generic and could find applications in a broad range of medical diagnostics in addition to cancer, such as neurodegenerative (Alzheimer’s, Parkinson’s and Lewy body) and cardiovascular disorders.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated