It is very difficult to accurately divide farmland and woodland in Gaofen 2 (GF-2) remote sensing image, because their single plant coverage is very small, and their spectra are very similar. The ratio of spatial resolution and one plant’s coverage area must be fully taken into account when designing the Convolutional Neural Network structure for extracting them from GF-2 image. We establish a Convolutional Encode Neural Networks model (CENN), The first layer has two sets of convolution kernels to learn the characteristics of farmland and woodland respectively, while the second layer is the encoder to encode the characteristics by transfer function, which can map the results to the corresponding category number. In the training stage, samples of farmland, woodland, and other categories are categorically used to train CENN, as soon as training is accomplished, CENN would acquire enough ability to accurately extract farmland and woodland from remote sensing images. The final extraction result is obtained by implementing per-pixel segmentation of images used to train the CENN. CENN is compared and analyzed with others such as Deep Belief Network (DBN), Full Convolutional Network (FCN), Deeplab Model. The results of experiments show that CENN can more accurately mine the characteristics of farmland and woodland, and it achieves its goal of extracting farmland and woodland with high precision from GF-2 images.
Keywords:
Subject: Computer Science and Mathematics - Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.