Preprint
Article

A Paradox of Unity

Altmetrics

Downloads

870

Views

520

Comments

2

This version is not peer-reviewed

Submitted:

29 December 2017

Posted:

02 January 2018

You are already at the latest version

Alerts
Abstract
In previous studies we found that generalized functions can be smooth, discrete, periodic or discrete periodic and they can either be local or global and they are regular or generalized functions. We also saw that these properties were related to Poisson’s summation formula on one hand and to Heisenberg’s uncertainty principle on the other. In this paper, we interlink these studies and show that scalars (real or complex numbers) considered as trivial functions are discrete and periodic, local and global as well as regular and generalized, simultaneously. However, this is also a paradox because it means that Dirac’s δ and 1 (its Fourier transform) coincide. They both are unity. We show that δ and 1 coincide in the sense of scalars (real or complex numbers) but they differ in the sense of (generalized) functions. This result can moreover be related to Max Born’s principle of reciprocity. It also answers an open question in present-day quantum mechanics because it means that the Dirac delta squared is simply delta.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated