Preprint
Article

Quantifying Model Risk in Credit Derivatives Pricing

Altmetrics

Downloads

1019

Views

507

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 January 2018

Posted:

04 January 2018

You are already at the latest version

Alerts
Abstract
We propose a methodology for the quantification of model risk in the context of credit derivatives pricing and CVA, where the uncertain or unmodelled parameter is often the correlation between rates and credit. We take the rates model to be Hull-White (normal) and the credit model to be Black-Karasinski (lognormal). We show how highly accurate analytic pricing formulae, hitherto unpublished, can be derived for CDS and extended to address instruments with defaultable Libor flows which may in addition be capped and/or floored. We also consider the pricing of a contingent CDS with an interest rate swap underlying. We derive explicit expressions showing how to good accuracy the dependence of model prices on the uncertain parameter(s) can be captured in analytic formulae which are readily amenable to computation without recourse to Monte Carlo or lattice-based computation. In so doing, we take into account the impact on model calibration of the uncertain (or unmodelled) parameter.
Keywords: 
Subject: Business, Economics and Management  -   Finance
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated