Preprint
Article

Forecasting Seasonal Inflow to Reservoirs Combining Copula-Based Bayesian Network Method with Drought Forecasting

Altmetrics

Downloads

502

Views

498

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 January 2018

Posted:

05 January 2018

You are already at the latest version

Alerts
Abstract
Especially for drought periods, the higher the accuracy of reservoir inflow forecasting, the more reliable the water supply from a dam. The article focuses on probabilistic forecasting of seasonal inflow to reservoirs and determines estimates from the probabilistic seasonal inflow according to drought forecast results. The probabilistic seasonal inflow was forecasted by a copula-based Bayesian network employing a Gaussian copula function. Drought forecasting was performed by calculation of the standardized streamflow index value. The calendar year is divided into four seasons; the total inflow volume of water to a reservoir for a season is referred to as the seasonal inflow. Seasonal inflow forecasting curves conforming to drought stages produce estimates of probabilistic seasonal inflow according to the drought forecast results. The forecasted estimates of seasonal inflow were calculated by using the inflow records of Soyanggang and Andong dams in the Republic of Korea. Under the threshold probability of drought occurrence ranging from 50 to 55 %, the forecasted seasonal inflows reasonably matched critical drought records. Combining the drought forecasting with the seasonal inflow forecasting may produce reasonable estimates of drought inflow from the probabilistic forecasting of seasonal inflow to a reservoir.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated