Abstract
Many studies discuss carbon-based materials because of the versatility of the carbon element. They present different sorts of understandings fairly at convincing and compelling levels. A gas state carbon atom converts into its various states depending on the conditions of processing. The electron transfer mechanism in the gas state carbon atom is responsible for its conversion to various states namely, graphite, nanotube, fullerene, diamond, lonsdaleite and graphene. The shape of energy responsible to transfer electron from the sides (east- and west-poles) of its atom is like parabola that is linked to states where exerted force to relevant poles of transferring electron (from filled state to nearby unfilled state) is remained neutral. So, the mechanism of forming different states of a gaseous carbon atom is under a bit non-conserved involving energy, which is not the case for atoms executing their confined inter-state electron-dynamics. Structure evolved in graphite, nanotube and fullerene states have one-dimensional, two-dimensional and four-dimensional atoms, respectively, and the associated energy curve is like parabola indicating transfer of electrons under neutral exertion of forces to their relevant poles. The graphite structure under only attained-dynamics of atoms is also developed but in two-dimension where engaged binding energy between them is under an influence of a small difference between involved forces of their opposite poles. Structural evolution in diamond, lonsdaleite and graphene atoms involve potential energy of electrons required to undertake infinitesimal displacements under orientationally-controlled exerting forces to their relevant poles. In this study, the growth of diamond was found to be from south to ground in which the atoms were bound in ground to south indicating tetra-electrons ground to south topological structure. Lonsdaleite showed a bi-electrons ground to just-south topological structure. The growth of graphene was just-north to ground; however, the binding of atoms was ground to just-north showing tetra-electrons ground to just-north topological structure. Glassy carbon exhibits layered-topological structure which successively binds tri-layers of gas, graphite and lonsdaleite state atoms in the repetitive manner. In this case, pair of orientated electrons of gas atoms and lonsdaleite atoms in their layers take another clamping of pair of unfilled energy knots by entering from the rear-side and front-side, respectively and to bind to intermediate layers of graphitic carbon atoms. Different carbon atoms develop amorphous structures when they bind under frustrating amalgamation. Hardness of carbon-based materials was also sketched in the light of different force-energy behaviors of different state carbon atoms. Here, structure evolution in each carbon state atom explores its own science.