Preprint
Article

Predictor Packing in Developing Unprecedented Shaped Colloidal Particles

Altmetrics

Downloads

1576

Views

1461

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 April 2018

Posted:

19 April 2018

Read the latest preprint version here

Alerts
Abstract
Developing particles of different geometric anisotropic shapes are the hot topic since decades as they guarantee some special features of properties not possible through other means. Again, controlling atoms to develop certain size and shape particle is a quite challenging job. In this study, gold particles of different shapes are developed via pulse-based electronphoton-solution interface process. Here, it is discussed that gold atoms under certain transition state amalgamated at solution surface to develop monolayer assembly around the light glow of electrons and photons, which is known in plasma, generating through flowing argon gas copper capillary, which is known in cathode. The rate of uplifting gold atoms to solution surface is controlled under the fixed optimized entrance of forced energy electron streams and photons of high forcing energy. Uplifting gold atoms dissociated on dissociation of precursor under the dissipating heat energy resulted by propagating photonic current through graphite rod immersed in the solution, which is known in anode. On the other hand, packets of nano shape energy resulted by the controlled tuned pulse protocol developing tiny particles of own shape by binding transition state atoms of compact monolayer assembly. At solution surface, adjusting atoms of monolayer tiny particle into one-dimensional arrays under the disconcerted lateral forces following by their elongation under uniformly exerted opposite poles forces. This results into convert them in a structure of smooth elements where adjacently placed electrons and those in the outer rings of elongated atoms inter-connecting side-to-side by introducing orientational-based stretching of clamped energy knots. Tiny sized particles developed their atoms of one-dimensional arrays in structure of smooth elements exert an immersing force at favorable side tips and where many such tiny particles around the light glow work as one unit for each case resulting into pack by inter-connecting at inside their common point to nucleate the shape of certain particle. Depending on the development zone of such tiny sized particles and their amount of simultaneous packing under naturally maintained orientations develop their different geometric anisotropic shaped particles. At fixed precursor concentration, increasing the process time results into develop particles of low aspect ratio. Under tuned parameters, developing mechanisms of particles of high aspect ratio exhibiting unprecedented features are discussed.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated