Preprint
Article

Fully Solution-Processable Fabrication of Multi-Layered Circuits on Flexible Substrate Using Laser

Altmetrics

Downloads

476

Views

485

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 January 2018

Posted:

08 January 2018

You are already at the latest version

Alerts
Abstract
The development of printing technologies has enabled the realization of electric circuit fabrication on flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of laser focal position and intensity. Based on these methods, the flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated with functional operations.
Keywords: 
Subject: Engineering  -   Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated