Preprint
Article

Phosphate Detection in Hydroponics using Molecularly Imprinted Polymer Sensors

Submitted:

06 January 2018

Posted:

08 January 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate and trimethyl phosphate. A cross-interference study between phosphate, nitrate and sulfate was carried out for the MIP materials using an inductance, capacitance and resistance (LCR) meter. Capacitance measurements were taken applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a combination of a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.
Keywords: 
Subject: 
Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated