Preprint
Article

Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought Involves Impaired Coordination of Transcriptomic and Proteomic Response and Regulation of Various Multifunctional Proteins

Altmetrics

Downloads

840

Views

576

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 January 2018

Posted:

30 January 2018

You are already at the latest version

Alerts
Abstract
The early generative phase of cauliflower (Brassica oleracea var. botrytis) curd ripening is sensitive to the water deficit. Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate the mitochondrial biogenesis of three cauliflower cultivars varying with drought tolerance. Diverse quantitative changes (down-regulations mostly) in the mitochondrial proteome were assayed by 2D PAGE coupled with LC-MS/MS. Respiratory (e.g. CII, CIV and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g. components of RNA editing machinery) appeared diversely affected in their abundance under two drought levels. Western immunoassays showed also cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides found in few 2D spots that appeared immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The level of selected messengers participating in drought response was also determined. We conclude that the mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars and associated with drought tolerance on the proteomic and functional levels. However, transcriptomic and proteomic regulations were largely uncoordinated due to the suggested altered availability of messengers for translation, mRNA/ribosome interactions and/or miRNA impact on transcript abundance and translation.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated