Preprint
Article

A Preliminary Study on Dimension-Reduction Algorithm for Variational Methods in Three Dimensions

This version is not peer-reviewed.

Submitted:

05 December 2019

Posted:

05 December 2019

You are already at the latest version

Abstract
Three Dimensional Variational data assimilation or analysis (3DVAR) is one of most classical methods for providing the initial values for numerical models. In this method, the dimensions of the background error covariance and the observational error covariance matrices are large. Therefore, it is difficult to get the inverse of the covariance matrices and to reduce the orders of these matrices without information loss. With the use of the Sylvester Equation, on the basis of a new linear regression, a new cost function for 3DVAR was given. For the first-guess m×n field, there is an approximate 1−(m2+n2)/(mn×mn) reduction with m>1 & n>1 by using the cost function. The results of the numerical experiments show that the effect of this algorithm is no worse than that of the old cost function for 3DVAR.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

694

Views

518

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated