Preprint
Article

Fuel Gas Network Synthesis Using Block Superstructure

Altmetrics

Downloads

526

Views

411

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 February 2018

Posted:

05 February 2018

You are already at the latest version

Alerts
Abstract
Fuel gas network (FGN) synthesis is a systematic method for reducing fresh fuel consumption in a chemical plant. In this work, we address the synthesis of fuel gas network using block superstructure originally proposed for process design and intensification (Demirel et.al. [1]). Instead of a classical source-pool-sink superstructure, we consider a superstructure with multiple feed and product streams. These blocks interact with each other through direct flows that connect a block with its adjacent blocks and through jump flows that connect a block with all blocks. The blocks with feed streams are viewed as fuel sources and the blocks with product streams are regarded as fuel sinks. Addition blocks can be added as pools when there exists intermediate operations among 9 source blocks and sink blocks. These blocks can be arranged in a I × J two-dimensional grid with I = 1 for problems without pools, or I = 2 for problems with pools. J is determined by the maximum number of pools/sinks. With this representation, we formulate fuel gas network synthesis problem as a mixed-integer nonlinear (MINLP) problem to optimally design a fuel gas network with minimal total annul cost. We present a real-life case study from LNG plant to demonstrate the capability of the proposed approach.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated