Preprint
Article

In-situ Reactive Interfacial Compatibilization and Properties of Polylactide/Sisal Fiber Biocomposites via Melt-blending with Epoxy-functionalized Oligomer

This version is not peer-reviewed.

Submitted:

02 February 2018

Posted:

06 February 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
To improve the interfacial bonding of sisal fiber reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with the addition of an epoxy-functionalized oligomer (ADR). The FTIR analysis and SEM characterization demonstrated that PLA molecular chain was bonded to the fiber surface and epoxy-functionalized oligomer played a hinge-like role between sisal fibers and PLA matrix, which resulted in improved interfacial adhesion between fibers and PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of ADR oligomer, which in turn reflected the improved interfacial interaction between SF and PLA matrix. These conclusions were further investigated by the calculated activation energies of glass transition relaxation (△Ea) of composites via dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened via addition of ADR oligomer. The interfacial interaction and structure-properties relationship of composites are key points of this study.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

641

Views

501

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated