Preprint
Review

Applications of Metals for Bone Regeneration

Altmetrics

Downloads

708

Views

748

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 February 2018

Posted:

06 February 2018

You are already at the latest version

Alerts
Abstract
The regeneration of bone tissue is a main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, while it should be resorbed even in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated and it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also on osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between the formation of new bone tissue and material degradation has not been found until now. The addition of different substances such as collagen or growth factors and also of different cell types have already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are differently used as basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designated for bone regeneration with the aim to give an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated