Preprint
Article

Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

Altmetrics

Downloads

679

Views

441

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

07 March 2018

Posted:

08 March 2018

You are already at the latest version

Alerts
Abstract
Atomic structure of N-electron atoms is often determined using the Hartree-Fock method, which is an integro-differential equation. The exchange term of the Hartree-Fock equations is usually treated as an inhomogeneous term of a differential equation, or with a local density approximation. This work uses matrix methods to solve for the Hartree-Fock equations, rather than the more commonly-used shooting method to integrate an inhomogeneous differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using computer linear-algebra packages. We extend the same technique to integro-differential equations, where a discretized integral can be written as a sum in matrix form. This method is compared against experiment and standard atomic structure calculations. We also can use this method for free-electron wavefunctions. This technique is important for spectral line broadening in two ways: improving the atomic structure calculations, and improving the motion of the plasma electrons that collide with the atom.
Keywords: 
Subject: Physical Sciences  -   Atomic and Molecular Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated