This paper aims to describe the geometrical structure and explicit expressions of family of finitely parametrized probability densities over smooth manifold $M$. The geometry of family of probability densities on $M$ are inherited from probability densities on Euclidean spaces $\left\{U_\alpha \right\}$ via bundle morphisms, induced by an orientation-preserving diffeomorphisms $\rho_\alpha:U_\alpha \rightarrow M$. Current literature inherits densities on $M$ from tangent spaces via Riemannian exponential map $\exp: T_x M \rightarrow M$; densities on $M$ are defined locally on region where the exponential map is a diffeomorphism. We generalize this approach with an arbitrary orientation-preserving bundle morphism; we show that the dualistic geometry of family of densities on $U_\alpha$ can be inherited to family of densities on $M$. Furthermore, we provide explicit expressions for parametrized probability densities on $\rho_\alpha(U_\alpha) \subset M$. Finally, using the component densities on $\rho_\alpha(U_\alpha)$, we construct parametrized mixture densities on totally bounded subsets of $M$. We provide a description of inherited mixture product dualistic geometry of the family of mixture densities.
Keywords:
Subject: Computer Science and Mathematics - Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.