Preprint
Article

Induced Dualistic Geometry of Finitely Parametrized Probability Densities on Manifolds

Altmetrics

Downloads

502

Views

475

Comments

0

This version is not peer-reviewed

Submitted:

14 March 2018

Posted:

14 March 2018

You are already at the latest version

Alerts
Abstract
This paper aims to describe the geometrical structure and explicit expressions of family of finitely parametrized probability densities over smooth manifold $M$. The geometry of family of probability densities on $M$ are inherited from probability densities on Euclidean spaces $\left\{U_\alpha \right\}$ via bundle morphisms, induced by an orientation-preserving diffeomorphisms $\rho_\alpha:U_\alpha \rightarrow M$. Current literature inherits densities on $M$ from tangent spaces via Riemannian exponential map $\exp: T_x M \rightarrow M$; densities on $M$ are defined locally on region where the exponential map is a diffeomorphism. We generalize this approach with an arbitrary orientation-preserving bundle morphism; we show that the dualistic geometry of family of densities on $U_\alpha$ can be inherited to family of densities on $M$. Furthermore, we provide explicit expressions for parametrized probability densities on $\rho_\alpha(U_\alpha) \subset M$. Finally, using the component densities on $\rho_\alpha(U_\alpha)$, we construct parametrized mixture densities on totally bounded subsets of $M$. We provide a description of inherited mixture product dualistic geometry of the family of mixture densities.
Keywords: 
Subject: Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated