Preprint
Article

Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; GNSS/IMU Case Study

This version is not peer-reviewed.

Submitted:

15 March 2018

Posted:

15 March 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The Bayes filters, such as Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of the unknowns. Efficient integration of multiple sensors requires deep knowledge of their error sources and it is not trivial for complicated sensors, such as Inertial Measurement Unit (IMU). Therefore, IMU error modelling and efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we develop deep Kalman filter to model and remove IMU errors and consequently, improve the accuracy of IMU positioning. In other words, we add modelling step to the prediction and update steps of Kalman filter and the IMU error model is learned during integration. Therefore, our deep Kalman filter outperforms Kalman filter and reaches higher accuracy.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

2360

Views

544

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated