Preprint
Review

A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters

Altmetrics

Downloads

1015

Views

756

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 March 2018

Posted:

21 March 2018

You are already at the latest version

Alerts
Abstract
Polyhydroxyalkanoates (PHA) are microbial biopolyesters utilized as “green plastics”. Their production under controlled conditions resorts to bioreactors operated in different modes. Because PHA biosynthesis constitutes a multiphase process, both feeding strategy and bioreactor operation mode need smart adaptation. Traditional PHA production setups based on batch, repeated batch, fed-batch or cyclic fed-batch processes are often limited in productivity, or display insufficient controllability of polyester composition. For highly diluted substrate streams like it is the case for (agro)industrial waste streams, fed-batch enhanced by cell recycling were recently reported as a viable tool to increase volumetric productivity. As emerging trend, continuous fermentation processes in single-, two-, and multi-stage setups are reported, which bring the kinetics of both microbial growth and PHA accumulation into agreement with process engineering, and allow tailoring PHA´s molecular structure. Moreover, we currently witness an increasing number of CO2-based PHA production processes using cyanobacteria; these light-driven processes resort to photobioreactors similar to those used for microalgae cultivation, and can be operated both discontinuously and continuously. This development goes in parallel to the emerging use of methane and syngas as an abundantly available gaseous substrates, which also calls for bioreactor systems with optimized gas transfer. The review sheds light on the challenges of diverse PHA production processes in different bioreactor types and operational regimes using miscellaneous microbial production strains such as extremophilic Archaea, chemoheterotrophic eubacteria and phototrophic cyanobacteria. Particular emphasize is dedicated to the limitations and promises of different bioreactor-strain combinations, and to efforts devoted to upscaling these processes to industrially relevant scales.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated