Preprint
Article

Quantification of the Impact of Photon Distinguishability on Measurement-Device- Independent Quantum Key Distribution

Altmetrics

Downloads

579

Views

519

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 March 2018

Posted:

27 March 2018

You are already at the latest version

Alerts
Abstract
Measurement-Device-Independent Quantum Key Distribution (MDI-QKD) is a two-photon protocol devised to eliminate eavesdropping attacks that interrogate or control the detector in realized quantum key distribution systems. In MDI-QKD, the measurements are carried out by an untrusted third party, and the measurement results are announced openly. Knowledge or control of the measurement results gives the third party no information about the secret key. Error-free implementation of the MDI-QKD protocol requires the crypto-communicating parties, Alice and Bob, to independently prepare and transmit single photons that are physically indistinguishable, with the possible exception of their polarization states. In this paper, we apply the formalism of quantum optics and Monte Carlo simulations to quantify the impact of small errors in wavelength, bandwidth, polarization and timing between Alice's photons and Bob's photons on the MDI-QKD quantum bit error rate (QBER). Using published single-photon source characteristics from two-photon interference experiments as a test case, our simulations predict that the finite tolerances of these sources contribute (4.04+/-20/Nsifted) to the QBER in an MDI-QKD implementation generating an Nsifted-bit sifted key.
Keywords: 
Subject: Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated