Preprint
Article

Transformation to Conservation Agriculture Shows Reduced Soil CO2 Emissions and Improved Soil Aggregate Stability in the First Season in Rain-Fed Areas in India

Altmetrics

Downloads

512

Views

381

Comments

0

Submitted:

09 April 2018

Posted:

10 April 2018

You are already at the latest version

Alerts
Abstract
Conservation Agriculture (CA) is capable of improving soil health and ecosystem functions. Soil carbon sequestration is one of the ecosystem processes that is of importance in sustainable land management involving reduction in greenhouse gas emissions and adaptation to climate change. In this study, we wanted to determine, during the first year of the process of establishing a CA cropping system in rain-fed areas in Madhya Pradesh state of India, which soil health indicators show measurable signs of improvement. Four field trials were selected, each comprising two neighboring plots. One plot (15×15 m) was managed conventionally under farmer practice and was tilled before sowing seeds, and in the adjacent plot Conservation Agriculture practices were applied. No mineral fertilizers or pesticides were applied in both treatments. Soil health indicators of soil aggregate stability, soil-atmosphere CO2 fluxes, water infiltration, soil moisture, potentially mineralizable nitrogen, soil organic content and bulk density were measured. Results demonstrate that soil CO2 emissions in CA soils decreased and soil aggregates stability improved in the first year. Generally, in CA soils, there were measurable improvements in all soil health indicators but only some of them were statistically significant.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated