A modular switched-capacitor (SC) DC-DC converter (MSCC) is introduced in this paper. It is designed to boost a low input voltage to a high voltage level and can be applied for photovoltaics and electric vehicles. This topology has high extensibility for high voltage gain output. The merits of the converters also lie in the fault tolerance operation and the voltage regulation with a minimum change in the duty ratio. Those features are built in when designing the modules and then integrating these into the DC-DC converter. Converter performance including voltage gain, voltage and current stress are focused and tested. The converter is modelled analytically, and its control algorithm is analyzed in detailed. Both simulation and experiment are carried out to verify the topology under normal operation and fault mode operation.
Keywords:
Subject: Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.