A simple, effective and environmental-friendly method was adopted for enhancing the photocatalytic activity of g-C3N4 in the reduction of aqueous Cr(Ⅵ) under visible-light irradiation. The enhancement was achieved via treatment of g-C3N4 in organic solvent with addition of NaOH particles by ultrasonic process for two hours. The results demonstrated that the treated g-C3N4 exhibited much higher photocatalytic activity than pristine g-C3N4 in the reduction of Cr(VI) . Under visible light irradiation for 120 min, the reduced ratios of Cr(VI) with the initial concentration of 50 mg/L in the presence of the treated g-C3N4and pristine g-C3N4 were 100% and 37.1%, respectively. With the addition of fulvic acid, Cr(VI) was efficiently removed at 40 min. Based on the characterization results of the structures and other physiochemical properties of the treated g-C3N4 and pristine g-C3N4 by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV Vis diffuse reflectance, the possible reasons responsible for the enhanced photocatalytic activity of the treated g-C3N4 were proposed. The yield and mechanism of different exfoliation methods were compared by semi-quantitative method.
Keywords:
Subject: Chemistry and Materials Science - Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.