Preprint
Article

An Integrated Approach to Water-Energy Nexus in Shale-Gas Production

This version is not peer-reviewed.

Submitted:

18 April 2018

Posted:

18 April 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Shale gas production is associated with significant usage of fresh water and discharge of wastewater. Consequently, there is a necessity to create the proper management strategies for water resources in shale gas production and to integrate conventional energy sources (e.g., shale gas) with renewables (e.g., solar energy). The objective of this study is to develop a design framework for integrating water and energy systems including multiple energy sources, cogeneration process, and desalination technologies in treating wastewater and providing fresh water for shale gas production. Solar energy is included to provide thermal power directly to a multi-effect distillation plant (MED) exclusively (to be more feasible economically) or indirect supply through a thermal energy storage system. Thus, MED is driven by direct or indirect solar energy, and excess or direct cogeneration process heat. The proposed thermal energy storage along with the fossil fuel boiler will allow for the dual-purpose system to operate at steady-state by managing the dynamic variability of solar energy. Additionally, electric production is considered to supply a reverse osmosis plant (RO) without connecting to the local electric grid. A multi-period mixed integer nonlinear program (MINLP) is developed and applied to discretize operation period to track the diurnal fluctuations of solar energy. The solution of the optimization program determines the optimal mix of solar energy, thermal storage, and fossil fuel to attain the maximum annual profit of the entire system. A case study is solved for water treatment and energy management for Eagle Ford Basin in Texas.
Keywords: 
Subject: 
Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated