Preprint
Article

Feynman Paths and Weak Values

Altmetrics

Downloads

502

Views

427

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 April 2018

Posted:

18 April 2018

You are already at the latest version

Alerts
Abstract
There has been a recent revival of interest in the notion of a `trajectory' of a quantum particle. In this paper we detail the relationship between Dirac's ideas, Feynman paths and the Bohm approach. The key to the relationship is the weak value of the momentum which Feynman calls a transition probability amplitude. With this identification we are able to conclude that a Bohm `trajectory' is the average of an ensemble of actual individual stochastic Feynman paths. This implies that they can be interpreted as the mean momentum flow of a set of individual quantum processes and not the path of an individual particle. This enables us to give a clearer account of the experimental two-slit results of Kocsis {\em et al.}}
Keywords: 
Subject: Physical Sciences  -   Theoretical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated