Preprint
Article

Wind Turbine Power Curve Upgrades

Altmetrics

Downloads

540

Views

445

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 April 2018

Posted:

20 April 2018

You are already at the latest version

Alerts
Abstract
Full-scale wind turbine technology has been widely developing in the recent years and condition monitoring techniques assist at the scope of making 100\% technical availability a realistic perspective. In this context, several retrofitting techniques are being used for further improving the efficiency of wind kinetic energy conversion. This kind of interventions is costly and, furthermore, the estimation of the energy enhancement is commonly provided under the hypothesis of ideal conditions, as for example absence of wakes between nearby turbines. A precise quantification of the energy gained by retrofitting is therefore precious in real conditions, that can be very different from ideal ones. In this work, three kinds of retrofitting are studied through the operational data of test case wind farms: improved start-up through pitch angle adjustment near the cut-in, aerodynamic blade retrofitting by means of vortex generators and passive flow control devices, extension of the power curve by raising cut-out and high wind speed cut-in. SCADA data are employed and reliable methods are formulated for estimating the energy improvement from each of the above retrofitting. Further, an insight is provided about wind turbine functioning under very stressing regimes, as for example high wind speeds.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated