Preprint
Article

Electricity Price Forecasting Using Recurrent Neural Networks

Altmetrics

Downloads

2507

Views

831

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 April 2018

Posted:

23 April 2018

You are already at the latest version

Alerts
Abstract
Accurate electricity price forecasting has become a substantial requirement since the liberalization of the electricity markets. Due to the challenging nature of the electricity prices, which includes high volatility, sharp price spikes and seasonality, various types of electricity price forecasting models still compete and can not outperform each other consistently. Neural Networks have been successfully used in machine learning problems and Recurrent Neural Networks (RNNs) have been proposed to address time-dependent learning problems. In particular, Long Short Term Memory and Gated Recurrent Units (GRU) are tailor-made for time series price estimation. In this paper, we propose to use Gated Recurrent Units as a new technique for electricity price forecasting. We have trained a variety of algorithms with rolling 3-year window and compared the results with the RNNs. In our experiments, 3-layered GRUs outperformed all other neural network structures and state of the art statistical techniques in a statistically significant manner in the Turkish day-ahead market.
Keywords: 
Subject: Business, Economics and Management  -   Finance
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated