Preprint
Article

Are Markets Truly Efficient? Experiments using Deep Learning for Market Movement Prediction

Altmetrics

Downloads

890

Views

560

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 April 2018

Posted:

02 May 2018

You are already at the latest version

Alerts
Abstract
We examine the use of deep learning (neural networks) to predict the movement of the S&P 500 Index using past returns of all the stocks in the index. Our analysis finds that the future direction of the S&P 500 index can be weakly predicted by the prior movements of the underlying stocks in the index. Decomposition of the prediction error indicates that most of the lack of predictability comes from randomness and only a little from nonstationarity. We believe this is the first test of S&P500 market efficiency that uses a very large information set, and it extends the domain of weak-form market efficiency tests.
Keywords: 
Subject: Business, Economics and Management  -   Finance
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated