Preprint
Article

Probabilistic Inference for Dynamical Systems

Altmetrics

Downloads

427

Views

297

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 April 2018

Posted:

02 May 2018

You are already at the latest version

Alerts
Abstract
A general framework for inference in dynamical systems is described, based on the language of Bayesian probability theory and making use of the maximum entropy principle. Taking as fundamental the concept of a path, the continuity equation and Cauchy's equation for fluid dynamics arise naturally, while the specific information about the system can be included using the Maximum Caliber (or maximum path entropy) principle.
Keywords: 
Subject: Physical Sciences  -   Thermodynamics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated