Preprint
Article

Compressive Online Video Background-Foreground Separation Using Multiple Prior Information and Optical Flow

Altmetrics

Downloads

481

Views

377

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 May 2018

Posted:

02 May 2018

You are already at the latest version

Alerts
Abstract
In the context of video background-foreground separation, we propose a compressive online Robust Principal Component Analysis (RPCA) with optical flow that separates recursively a sequence of video frames into foreground (sparse) and background (low-rank) components. This separation method can process per video frame from a small set of measurements, in contrast to conventional batch-based RPCA, which processes the full data. The proposed method also leverages multiple prior information by incorporating previously separated background and foreground frames in an n-l1 minimization problem. Moreover, optical flow is utilized to estimate motions between the previous foreground frames and then compensate the motions to achieve higher quality prior foregrounds for improving the separation. Our method is tested on several video sequences in different scenarios for online background-foreground separation given compressive measurements. The visual and quantitative results show that the proposed method outperforms other existing methods.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated