Under abiotic stress conditions, arbuscular mycorrhizal (AM) fungi help plants by improving nutrient and water uptake. Finger millet is an arid crop having soils with poor water holding capacity. Therefore, it is difficult for the plants to obtain water and mineral nutrients from the soil to sustain life. To understand the role of mycorrhizal symbiosis in water and mineral up-take from the soil, we studied the role of Rhizophagus intraradices colonization and its beneficial role for drought stress tolerance in finger millet seedling. Under severe drought stress condition, AM inoculation led to the significant increase in plant growth (7%), phosphorus, and chlorophyll content (29%). Also, the level of osmolytes including proline and soluble sugars were found in higher quantities in AM inoculated seedlings under drought stress. Under water stress, the lipid peroxidation in leaves of mycorrhized seedlings was reduced by 29%. The flavonoid content of roots in AM colonized seedlings was found 16% higher compared to the control, whereas the leaves were accumulated more phenol. Compared to the control, ascorbate level was found to be 25% higher in leaf tissue of AM inoculated seedlings. Moreover, glutathione (GSH) level was increased in mycorrhiza inoculated seedlings with a maximum increment of 182% under severe stress. The results demonstrated that AM provided drought tolerance to the finger millet seedlings through a stronger root system, greater photosynthetic efficiency, a more efficient antioxidant system and improved osmoregulation.
Keywords:
Subject: Biology and Life Sciences - Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.